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Abstract
The critical behaviour of d-dimensional n-vector models at m-axial Lifshitz
points is considered for general values of m in the large-n limit. It is proven
that the recently obtained large-n expansions (Shpot et al 2005 J. Phys.:
Condens. Matter 17 S1947) of the correlation exponents ηL2, ηL4 and the
related anisotropy exponent θ are fully consistent with the dimensionality
expansions to second order in ε = 4 + m/2 − d (Diehl and Shpot 2000 Phys.
Rev. B 62 12338; Shpot and Diehl 2001 Nucl. Phys. B 612 340) inasmuch as
both expansions yield the same contributions of order ε2/n.

PACS numbers: 05.20.−y, 11.10.Kk, 64.60.Ak, 64.60.Fr

1. Introduction

Lifshitz points (LPs) are familiar examples of multi-critical points. At a LP a disordered,
a homogenous ordered, and a modulated ordered phase meet [1–4]. In the case of systems
with m-axial LPs, there is a degeneracy such that long-range order modulated along any of m
distinct axes can occur in the modulated ordered phases. The study of critical behaviour at
such LPs began immediately after their discovery in the middle of the 1970s.

Unfortunately, the technical difficulties one is faced with in analytical renormalization
group (RG) calculations are enormous. This is the main reason why RG results based on
systematic expansions, such as expansions in powers of ε = d∗(m)−d about the upper critical
dimension d∗(m) = 4 + m/2, or in powers of 1/n, where n is the number of components of
the order parameter, had remained quite scarce for decades. Furthermore, early ε-expansion
results obtained by two different groups (cf [5–7]) had yielded contradictory results, and
these discrepancies had remained unclarified for many years. The results of [5], which were
restricted to the special cases of bi- and hexa-axial LP m = 2 and m = 6, were reproduced 20
years later by field-theoretic means [8]. However, a full two-loop RG analysis in d∗(m) − ε

dimensions was reported only in 2001 [9, 10]. This gave the ε expansions to second order of
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all four main independent critical exponents as well as the correction-to-scaling exponent for
general values of m, besides resolving the mentioned discrepancies4.

In a recent paper [13] (hereafter referred to as I), we have shown how the 1/n expansion
can be applied to the study of critical behaviour at m-axial LPs. We determined the correlation
exponents ηL2 and ηL4, and the related anisotropy index θ of d-dimensional systems to first
order in 1/n for general values of m. The results took the form of complicated integrals
whose integrands involve further multi-dimensional integrals. We were able to check that in
the isotropic limits m → 0 and m → d they correctly reduce to known results, namely, the
expansions to order 1/n of the Fisher exponent η at a usual critical point [14, 15], and that
of ηL4 at the isotropic d-axial LP [16], respectively. Furthermore, we could show that our
O(1/n) results are in conformity with published dimensionality expansion results about the
lower critical dimension d∗(m) = 2 +m/2 both for m = 0 [17] and for m = 2 and m = 6 [18].

The virtues of the 1/n expansion are well known: it can be applied in arbitrary fixed
dimensions d, does not rely on the smallness of a further expansion parameter such as ε

and yields nontrivial results below the upper critical dimension d∗(m) in a mathematically
controlled fashion. Besides its capability of providing valuable information about the
critical behaviour for given d and m, it allows for nontrivial checks on ε-expansion results.
Unfortunately, the complicated general form of our results in I prevented us from proving their
consistency with the ε-expansion results of [9, 10] for general m. We could verify it in the
isotropic limits m → 0 and m → d. However, the only other case in which we could explicitly
demonstrate this consistency by analytical means was that of m = 2. This is unfortunate for
at least two reasons: first, it excludes, in particular, the physically important uniaxial case
m = 1; second, unlike both the contributions of first order in ε = d∗(m) − d as well as their
O(d − d∗(m)) analogues in the expansions about the lower critical dimensions d∗(m), the
O(ε2) terms exhibit a nontrivial m-dependence [9, 10]. This propagates into the O(1/n) series
coefficients, and ought to be checked.

The purpose of this paper is to fill this gap and prove that our large-n expansion results [13]
to order 1/n for the exponents ηL2(d,m, n), ηL4(d,m, n) and θ(d,m, n) are fully consistent
with the ε-expansion results of [9, 10]. In the following section we first provide the necessary
background, recalling the continuum model on which our analysis is based as well as our
results for general m given in I. We then show that these results can be rewritten in a form
allowing analytic comparisons with the O(ε2) results of [9, 10] for general m. The proof that
they are in conformity with the latter is given in section 3. The closing section 4 contains a
brief discussion and concluding remarks.

2. Large-n expansions of the correlation exponents at the Lifshitz point

Just as in I, we consider a model defined by the Euclidean action

H[φ] = 1

2

∫
dd−mr

∫
dmz

[
(∇rφ)2 +

(∇2
zφ

)2
+ τLPφ

2 + ρLP(∇zφ)2 +
λ

8
φ4

]
. (1)

Since we intend to work directly at the LP, we have set the coefficients of the quadratic terms
to their corresponding critical values τLP and ρLP

5.
Here φ = φ(x) is the usual n-component order-parameter field. Its d-dimensional

position vector x = (r,z) ∈ R
d has a (d − m)-dimensional ‘perpendicular’ component r

4 Alternative results reported in [11] could be refuted [12].
5 In the following, it is tacitly understood that d with d < d∗(m) = 4 + m/2 and m are chosen such that a LP exists.
This requires, in particular, that d exceeds the dimension 2 + m/2 below which the homogeneous ordered phase
becomes thermally unstable because of spin-wave excitations. However, it also requires that the modulated ordered
phase remains stable. For a discussion of these delicate issues, see the review article [4] and its references.
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and an m-dimensional ‘parallel’ one, z. The subspace associated with z is the one in which
modulated order can occur in the corresponding phase. The r subspace is its orthogonal
complement. A similar decomposition has been made for the gradient operator ∇ = (∇r,∇z).
Thus ∇2

z is the Laplacian in the parallel subspace.
Employing the notational conventions of I, we write the wave vector conjugate to

x = (r,z) as k = (p, q), with p ∈ R
d−m and q ∈ R

m. Further, we introduce the two-
point cumulant Gφ(r, z) and its Fourier transform G̃φ(p, q) through

Gφ(r, z) = 1

n
[〈φ(r,z) · φ(0, 0)〉 − 〈φ(r,z)〉 · 〈φ(0, 0)〉]

=
∫ (d−m)

p

∫ (m)

q

ei(r·p+z·q)G̃φ(p, q), (2)

where
∫ (d−m)

p ≡ (2π)−d+m
∫

R
d−m dd−mp and

∫ (m)

q ≡ (2π)−m
∫

R
m dmq denote normalized

(d − m)- and m-dimensional integrals, respectively.
As discussed in I, the full propagator G̃φ(p, q) becomes a generalized homogeneous

function G̃
(as)
φ (p, q) in the limit of large length scales. The latter function satisfies at the LP

the homogeneity relations

G̃
(as)
φ (p, q) = p−2+ηL2G̃

(as)
φ (1, qp−θ ) = q−4+ηL4G̃

(as)
φ (pq−1/θ , 1). (3)

Only two exponents are independent here since the usual scaling relation

θ = 2 − ηL2

4 − ηL4
(4)

must hold for the anisotropy index θ by consistency.
In the limit n → ∞ with nλ = fixed, G̃

(as)
φ (p, q) reduces to the Gaussian propagator

G̃(0)(p, q) pertaining to the Hamiltonian (1) with λ = τLP = ρLP = 0. We have

lim
n→∞

nλ=const

G̃
(as)
φ (p, q) = G̃(0)(p, q) ≡ 1

p2 + q4
. (5)

At order 1/n, self-consistent equations must be solved which were discussed in I and need
not be repeated here. To this end, we looked for solutions of the scaling form (3), utilizing the
ansätze

ηL2 = η
(1)
L2

n
+ O(n−2), ηL4 = η

(1)
L4

n
+ O(n−2), θ = 1

2
+

θ(1)

n
+ O(n−2), (6)

together with the corresponding 1/n expansions for the scaling functions in equation (3) and
the relation

θ(1) = η
(1)
L4

8
− η

(1)
L2

4
(7)

implied by the scaling law (4). This led to consistency conditions (equations (27) and (28) of I)
from which we obtained the results

η
(1)
L2 = Kd−m

d − m

∫ (m)

q

2P1(q
4)

(1 + q4)3

1

I (1, q)
(8)

and

η
(1)
L4 = Km

4m(m + 2)

∫ (d−m)

p

8P2(p
2)

(p2 + 1)5

1

I (p, 1)
. (9)

Here Kd−m and Km, defined by

KD ≡ SD

(2π)D
with SD = 2πD/2

	(D/2)
, (10)
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where SD is the area of a unit sphere in D dimensions, are conventional factors resulting
from the angular integrations at D = d − m and m. Further, P1(q

4) and P2(p
2) denote the

polynomials

P1(q
4) = 4 − (d − m)(1 + q4) (11)

and

P2(p
2) = 3(8 − m)(6 − m) + 5(m2 + 2m − 96)p2 + (m2 + 50m + 144)p4 − m(m + 2)p6.

(12)

Finally, I (p, q) represents the analogue of Ma’s ‘elementary bubble’ [14] for the LP,

I (p, q) =
∫ (d−m)

p′

∫ (m)

q′

1

p′2 + q ′4
1

|p′ + p|2 + |q′ + q|4 , (13)

whose homogeneity property

I (p, q) = p−εI (1, qp−1/2) = q−2εI (pq−2, 1), ε = 4 − d + m/2, (14)

we recall for later use.
Let us first show that the results (8) and (9) for the O(1/n) coefficients can be rewritten as

η
(1)
L2 = Km

2(d − m)

∫ (d−m)

p

1

p2 + 1
∇2

p

1

I (p, 1)
(15)

and

η
(1)
L4 = Kd−m

2m(m + 2)

∫ (m)

q

1

1 + q4
∇4

q

1

I (1, q)
, (16)

respectively, where ∇4
q ≡ (∇2

q

)2
. These representations of the coefficients η

(1)
L2 and η

(1)
L4 are

well suited for determining the O(ε2/n) contributions to the exponents ηL2 and ηL4. They
will be employed as the starting point in our proof of consistency with the ε-expansion results
of [9, 10] given in the following section.

To derive these representations, note first that the actions of the D-dimensional Laplacian
∇2

K = ∑D
γ=1 ∂2/∂K2

γ and its square ∇4
K on functions f (K2) of K2 = ∑D

γ=1 K2
γ can be

written as

∇2
Kf (K2) = 2Df ′(K2) + 4K2f ′′(K2) (17)

and

∇4
Kf (K2) = 4D(D + 2)f ′′(K2) + 16(D + 2)K2f (3)(K2) + 16K4f (4)(K2), (18)

where f (s)(.) means the sth derivative of the function f (.).
Using these relations, it is straightforward to see that the rational functions appearing in

the integrands of (8) and (9) can be expressed as

2P1(q
4)

(1 + q4)3
= ∇2

P

1

P 2 + q4

∣∣∣∣
P 2=1

(19)

and

8P2(p
2)

(1 + p2)5
= ∇4

Q

1

p2 + Q4

∣∣∣∣
Q2=1

. (20)

We now insert these results into equations (8) and (9), use hyper-spherical coordinates
for the integrals

∫ (m)

q and
∫ (d−m)

p , make the changes of variables q → p = q−2 and p →
q = p−1/2 in the radial integrals over q and p, and utilize the scaling property (14) to express
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I (1, p−1/2) and I (q−2, 1) in terms of I (p, 1) and I (1, q) respectively. The derivative term
on the right-hand side of equation (19) becomes p2∇2

P (P 2p2 + 1)−1|P=1 = p2∇2
p(p

2 + 1)−1.
The ∇4

Q term in equation (19) transforms in a corresponding fashion. One thus arrives at
expressions that agree with equations (15) and (16) except that the derivatives act to the left.
Integration by parts then yields the claimed results.

A straightforward, though important first application of them is to show that the ε

expansion of the coefficients η
(1)
L2 and η

(1)
L4 starts at order ε2,

η
(1)
L2,4 = η

(1,2)
L2,4ε

2 + O(ε3). (21)

To see this, note that I (p, q) has a Laurent expansion about ε = 0 of the form

I (p, q) = I−1

ε
+ I0(p, q) + O(ε) (22)

with a momentum-independent residuum I−1, given by

I−1 = (4π)−(8+m)/4 	(m/4)

	(m/2)
(23)

according to [9, 10] (see equations (7), (24) and (89) of [9] or (38) and (39) of [10], where I−1

was denoted Fm,0). Hence

∇2
p

1

I (p, q)
= −ε2

∇2
pI0(p, q)

I 2
−1

+ O(ε3) (24)

with ∇2
pI0(p, q) = [∇2

pI (p, q)
]
ε=0. Analogous results with ∇2

p replaced by ∇4
q hold. Thus

both η
(1)
L2 and η

(1)
L4 are indeed of order ε2, and for their O(ε2) expansion coefficients η

(1,2)
L2,4 we

obtain from equations (15), (16) and (24) the results

η
(1,2)
L2 = − Km

8 − m

1

I 2
−1

∫ (4−m/2)

p

1

p2 + 1
∇2

pI (p, 1)|ε=0 (25)

and

η
(1,2)
L4 = − K4−m/2

2m(m + 2)

1

I 2
−1

∫ (m)

q

1

1 + q4
∇4

qI (1, q)|ε=0. (26)

3. Epsilon expansions of η
(1)
L2 and η

(1)
L4

We are now ready to present the announced proof of consistency. We shall show that the ε

expansions of the correlation exponents ηL2 and ηL4 are related to the coefficients η
(1)
L2 and η

(1)
L4

via

ηL2,4 = n + 2

(n + 8)2
η

(1)
L2,4 + O(ε3). (27)

Since the prefactor (n + 2)/(n + 8)2 on the right-hand side reduces to 1/n in the large-n limit,
consistency between the ε expansions to second order and the 1/n expansions to first order is
an immediate consequence.

The O(ε2) results of [9, 10] for the exponents ηL2,4 involved single integrals, which for
general m had to be computed by numerical means. In the notation of the second of these
publications, they read

jφ(m) ≡ Bm

∫ ∞

0
dυ υm−1
3(υ;m, d∗) (28)

5
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and

jσ (m) ≡ Bm

∫ ∞

0
dυυm+3
3(υ;m, d∗), (29)

where

Bm = S4−m/2Sm

I 2
−1

(30)

and


(υ;m, d) ≡ G(0)(1, υ). (31)

The latter is the scaling function associated with the free position-space propagator
G(0)(r, z), whose scaling properties

G(0)(r, z) = r−2+εG(0)(1, zr−1/2) = z−4+2εG(0)(rz−2, 1) (32)

we recall. For general values of m and d, it is a difference of two generalized hypergeometric
functions 1F2. This is why no analytic results for the integrals jφ(m) and jσ (m) are available
for general m. In [10], the reader may find numerical results for them at m = 1, 2, . . . , 7 along
with analytical ones for m = 2 and m = 6.

To prove the relations (27), we must show that

η
(1,2)
L2 = 2

8 − m
jφ(m) (33)

and

η
(1,2)
L4 = − 1

2m(m + 2)
jσ (m). (34)

Let us start from equation (25). Its integral
∫ (4−m/2)

p has the form of a scalar product

〈f |g〉 in L2(R
4−m/2), the space of square integrable functions, that is evaluated in the

p-representation. In r-space the bra 〈f | is represented by f (r)∗ ≡ 〈f |r〉, where f (r) is
the Fourier q-transform of G(0)(r, z), taken at an arbitrary unit q-vector q̂. Performing the
angular integrations in the required m-dimensional integral is straightforward and yields

f (r) =
∫

dmz G(0)(r, z) eiq̂·z = (2π)m/2
∫ ∞

0
dz zm/2Jm

2 −1(z)G
(0)(r, z), (35)

where from now on ε is set to zero in G(0)(r, z).
Likewise, 〈r|g〉 ≡ g(r) is the Fourier q-transform of the function (−r2)[G(0)(r, z)]2 for

q = q̂. In the resulting expression for

〈f |g〉 = −(2π)m
∫

d4−m/2r

∫ ∞

0
dz

∫ ∞

0
dz′ r2(zz′)m/2Jm

2 −1(z)G
(0)(r, z)Jm

2 −1(z
′)[G(0)(r, z′)]2

(36)

we substitute the first of the scaling forms (32) along with equation (31). We then make
the changes of variables r → υ ≡ zr−1/2 in the radial part of the integration over r and
z′ → ζ = z′/z. The resulting integral over z is the special case of the closure relation for
Bessel functions6∫ ∞

0
dz zJµ(ζz)Jµ(bz) = δ(ζ − b)/ζ (37)

6 See, for instance, [19].
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with µ = m/2 − 1 and b = 1. The integral over ζ can now be performed. Substituting the
result into equation (25) and noting (28) and (30) then gives the asserted result (33) for the
coefficient η

(1,2)
L2 .

The corresponding expression (34) for η
(1,2)
L4 can be proven in an analogous fashion. The

integral
∫ (m)

q is a scalar product 〈h|w〉 in L2(R
m) between h(z), the Fourier p-transform of

G(r, z), and w(z), that of z4[G(0)(r, z)]2, taken at a unit p-vector p̂. We perform the angular
integrals in the Fourier integrals

∫
d4−m/2r and

∫
d4−m/2r ′, and make the changes of variables

z → υ = zr−1/2 and r ′ → ζ = r ′/r . The integral over r is of the form (37) with µ = 1−m/4
and b = 1. Once the integral over ζ is performed, the desired result follows from equations
(26), (30) and (29).

4. Concluding remarks

In this paper, we have shown that the large-n expansion yields O(1/n) results for the
correlation exponents ηL2 and ηL4 and the related anisotropy exponent θ for general m,
which are fully consistent with the ε-expansion of [9, 10]. In view of the long-standing
discrepancies mentioned in the introduction and the great technical challenges encountered in
both expansion methods beyond lowest order, the established consistency is very gratifying,
providing nontrivial checks of the results of both expansions given in [9, 10, 13], respectively.
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